Forecasting ENSO with a smooth transition autoregressive model
نویسندگان
چکیده
منابع مشابه
Forecasting ENSO with a smooth transition autoregressive model
This study examines the benefits of nonlinear time series modelling to improve forecast accuracy of the El Niño Southern Oscillation (ENSO) phenomenon. The paper adopts a smooth transition autoregressive (STAR) modelling framework to assess the potentially regime-dependent dynamics of sea surface temperature anomaly. The results reveal STAR-type nonlinearities in ENSO dynamics, resulting in sup...
متن کاملA Vector Autoregressive ENSO Prediction Model
The authors investigate a sea surface temperature anomaly (SSTA)-only vector autoregressive (VAR) model for prediction of El Niño–Southern Oscillation (ENSO). VAR generalizes the linear inverse method (LIM) framework to incorporate an extended state vector including many months of recent prior SSTA in addition to the present state. An SSTA-only VARmodel implicitly captures subsurface forcing ob...
متن کاملVolatility Forecasting with Smooth Transition Exponential Smoothing
Adaptive exponential smoothing methods allow smoothing parameters to change over time, in order to adapt to changes in the characteristics of the time series. This paper presents a new adaptive method for predicting the volatility in financial returns. It enables the smoothing parameter to vary as a logistic function of user-specified variables. The approach is analogous to that used to model t...
متن کاملDynamic Bayesian smooth transition autoregressive models
In this paper we propose the Gaussian Dynamic Bayesian Smooth Transition Autoregressive (DBSTAR) models for nonlinear autoregressive time series processes as alternative to both the classical Smooth Transition Autoregressive (STAR) models of Chan and Tong (1986) and the computational Bayesian STAR (CBSTAR) models of Lopes and Salazar (2005). The DBSTAR models are autoregressive formulations of ...
متن کاملForecasting Inflation: Autoregressive Integrated Moving Average Model
This study compares the forecasting performance of various Autoregressive integrated moving average (ARIMA) models by using time series data. Primarily, The Box-Jenkins approach is considered here for forecasting. For empirical analysis, we used CPI as a proxy for inflation and employed quarterly data from 1970 to 2006 for Pakistan. The study classified two important models for forecasting out ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Environmental Modelling & Software
سال: 2013
ISSN: 1364-8152
DOI: 10.1016/j.envsoft.2012.09.008